Efficiency Measure of Insurance v/s Takāful Firms Using DEA Approach: A Case of Pakistan

ATIQUZZAFAR KHAN*
UZMA NOREEN*

Abstract

This study aims at comparing the Pakistan’s Takāful and conventional insurance companies in terms of efficiency and productivity for the period 2006-2010. We apply Data Envelopment approach to estimate technical, allocative and cost efficiencies. The results indicate that the insurance industry as a whole is cost inefficient due to high allocative inefficiency. However, technical efficiency components show improving trends. Results further indicate that Takāful firms are more efficient as compared to conventional insurance firms. Malmquist productivity index shows a significant improvement in scale efficiency. However, we do not find any considerable contribution of technology to improve overall productivity. The study suggests introduction of innovative and diversified products in insurance industry of Pakistan, particularly for Takāful companies.

Keywords: Takāful, insurance, Comparative Analysis, Non-Parametric Methods.
JEL Classification: G22, P51 D22, C14.
KAU-IEI Classification: I44.

1. Introduction

The insurance industry plays an important role in the development of social and economic sectors of an economy by minimizing risk of all economic activities on the one hand and by channelizing long term financial resources on the other. An efficient
and productive insurance sector also contributes to economic growth of a country by transforming savings into investment projects through the financial intermediation (Financial Sector Assessment: 2005). Insurance companies offer different services to households and businesses for their well-being. The primary service of insurance company is to provide risk coverage against any loss to property, business and life, etc. Thus, an insurance company encourages the otherwise risk-averse individuals and entrepreneurs to undertake high return activities, of course with higher risk, than they would normally hesitate to do so.

Given the importance of insurance in the country’s socio-economic development and its distinct functions from other financial institutions, it seems attractive to look at its performance, particularly in the presence of dual insurance system where Takāfūl
1 and conventional insurance firms are working side by side. Before the introduction of Takāfūl rules in 2005, insurance sector in Pakistan comprised of only conventional insurance firms. Since 2005, Takāfūl industry started operation and now 5 Takāfūl firms (two family and three general Takāfūl firms) are offering different Sharī‘ah
2 compliant products in the market. First Takāfūl firm in Pakistan started its operation in 2006, and now five Takāfūl firms are operational in the country by 2011. Since 2006, Takāfūl industry demonstrated healthy growth in its net & gross premium and assets structure [See Appendix A Table 1].

Efficiency is an important issue for Takāfūl firms as they are facing intense competition from the well-established conventional insurers. Moreover Takāfūl operators have the vast opportunity to attract those customers who were not previously having the conventional insurance because of its incompliance with Sharī‘ah; hence it is possible to increase customer base and the insurance penetration rate in Pakistan.

In recent years there has been a significant growth in insurance sector of Pakistan along with the entry of Takāfūl firms in industry. This very fact motivates us to undertake the efficiency and productivity analysis of insurance and Takāfūl firms. The present study attempts to measure the performance of insurance and Takāfūl industry and tries to explore the relationship between the efficiency and productivity

1 Takāfūl is the concept of Islamic insurance (as alternative to conventional insurance) based on principles of shared responsibility and risk sharing through mutual cooperation, rather than risk exchange.

2 Sacred orders of Allah in the Qur’ān, religious, social and commercial practices of the Prophet (SAW), Qiyās (Analogy), and Ijmā‘ (the agreement of whole Islamic world on an issue) form the basis of Sharī‘ah.
with different operational measures of risk protection. More specifically, the study will concentrate on the comparison of cost efficiency and total factor productivity of different Takāful and conventional firms under reference. It is expected that the findings of this study will help the insurers, regulators, government and Sharīʿah Boards of Takāful companies to design new and innovative Sharīʿah compliant products in Pakistan, which in return will stimulate Takāful demand and increase the insurance penetration in the country.

The rest of the paper is planned as follows. Section 2 reviews the relevant literature on efficiency and productivity of insurance and Takāful companies. Section 3 outlines the related concepts and empirical methodology. Section 4 presents data and the description of the selected variables and Section 5 analyzes the results. The last section concludes the study.

2. Literature Review

There are many studies that explore the efficiency and productivity of insurance sector, both in developed and developing economies, by using parametric and non-parametric approaches. However very few studies are available that measures the efficiency of Takāful industry. Most of the studies on insurance efficiency have focused heavily on the developed countries and particularly, on the insurance industry in USA and the west [see, Gardner and Grace (1993), Yuengert (1993), Cummins et al. (1999), Amel et al. (2004), Greene and Segal (2004) and Jeng et al. (2007)].

Studies that evaluated the performance of European insurance sector include Diacon et al. (2002), Ennsfellner et al. (2004), Cummins and Misas (2006), Fenn et al (2007). For instance, Ennsfellner et al. (2004) investigate the production efficiency of Austrian insurance industry, while Cummins and Misas (2006) examine the impact of organizational structure on the efficiency of Spanish insurance firms. Other studies in European countries focus on productivity measurement using Malmquist index and stochastic frontier analysis [see for example, Cummins et al. (1996) for Italy, Fenn et al. (2007) for European countries]. These studies document that both efficiency and productivity of insurance companies altered significantly due to deregulatory process in these countries. Further, it is concluded that growth in new products and adoption of technology has improved the performance of insurance sector in these economies significantly.

Although, most of the literature is centered upon the performance of insurance sector either in U.S. or other developed countries, however, in recent years, we find
other studies that investigate efficiency and productivity of this sector in Asian economies. While majority of these studies cover East Asian economies (see for example, Mansoor and Radam, 2000; Karim and Jhantasana, 2005; Hao and Chou, 2005; and Jeng and Lai, 2005), there are a few studies on South Asian countries as well.

Most of the studies have attempted to measure the efficiency of conventional insurance, but a few studies have also focused on the efficiency of Takāful firms, for instance Kader et al. 2010; Yusop et al. 2011; Ismail et al, 2011; examines the efficiency of Takāful firms operating in different countries. Kader et al (2011) investigated the cost efficiency of Takāful firms operating in seventeen Islamic countries. Their study concludes that average cost efficiency scores of Takāful firms are comparable with developed conventional insurers. They further suggest that a skilled and experienced Board of Directors can contribute positively to optimal resource allocation and hence the efficiency.

Ismail et al. (2011) perform a study to measure the efficiency of Takāful and conventional insurers in Malaysia over the period 2004-2009. They find that efficiency score for Takāful firms’ remains lower (i.e. 64 percent) than their conventional counterparts (i.e. 87 percent). The study further suggests that Takāful firms should reduce their agency cost and management expenses and improve their investment gains by investing in healthy projects. Saad et al. (2006) also analyze the efficiency of life insurance industry in Malaysia, using the data on Takāful and conventional insurance firms. The findings of the study indicate that conventional firms are performing better as compared to Takāful firms. They further suggest that Takāful firms should increase their size to optimal level in order to improve the efficiency score.

Despite the fact that a growing literature is available on efficiency of insurance sector as well as on Takāful firms around the globe, we do not find even a single study that measures the comparative performance of Pakistan’s insurance and Takāful sector. Of course, a few studies are available on comparison of Islamic and conventional banking efficiency (see, Khyzer et al, 2011; Akhtar et al, 2011; Shah et al, 2012). Thus it will be interesting to investigate the relationship between the efficiency and productivity of two different organizational forms i.e. Takāful and conventional firms having different operational framework towards risk protection.
3. Methodology

The efficiency concept is basically used to evaluate the performance of a firm. Conventionally, financial ratios such as return on assets, return on equity, expense to premium ratios etc. are used to measure their performance. However the emergence of frontier methodologies with their meaningful and reliable measures now dominates the conventional approaches to evaluate efficiency and most studies follow the new approach.

There are two main frontier based approaches used to measure the efficiency: namely parametric and non-parametric approach. The parametric approach requires the specification of functional form of the production, cost and profit frontier and some distributional assumptions about the error term. On the other hand, non-parametric approach does not assume any specific functional form for evaluating efficiency, and therefore, does not take into account the error term. (Cummins and Xie; 2008).

Data Envelopment Analysis (DEA) was first introduced by Charnes et al. (1978) and extended by Banker, et al. (1984). The purpose of this approach was to measure the relative efficiency of each DMU (Decision Making Unit) with the best practices firm. DEA decomposes the cost efficiency (CE) into two components. One is technical efficiency (either maximizing output for a given level of inputs or minimizing inputs for a given level of output). The other is allocative efficiency (using input in optimal proportions given the input prices and output quantities). Technical Efficiency (TE) can be further decomposed into Pure Technical Efficiency (PTE) and Scale Efficiency (SE). SE occurs when firm operates at Constant Returns to Scale (CRS) and PTE occurs when firm maximizes its output with Variable Returns to Scale (VRS). The resultant efficiency measure, ranging between zero (least efficient) and one (most efficient), depicts the distance from each unit to frontier.

The present study uses non-parametric approach by applying DEA. We choose this approach on the basis of certain advantages. The main advantage of this approach lies in lesser demand for data and therefore it is appropriate for small sample size. Further, DEA\(^3\) analyzes the efficiency of each firm separately, and can easily identify the efficiency and productivity changes across the firms (Cummins

\(^3\) For further details on DEA see [Coelli (1996) and Coelli et al. (1997)].
and Xie; 2008). We use the software package DEAP\(^4\) developed by Coelli (1996) to measure the cost efficiency and its components.

Finally, to measure the change in efficiency and technology, we adopt the DEA based Malmquist Index Approach. The idea was first presented by Malmquist (1953) and later extended by Caves et al. (1982). There are several methods to compute the Malmquist productivity index. We estimated output oriented Malmquist index in this study, which is based on DEA. Malmquist indices can also be calculated by using DEAP software package. To estimate the Malmquist Productivity Index we need a balanced panel data. For this purpose, we include only 16 firms for the period 2007-2010.

4. Data and Variable Description

4.1. Data

The data sample for this analysis consists of 12 conventional insurance and 5 \emph{Takāful} companies operating in Pakistan (List of insurance and \emph{Takāful} companies is given as Appendix B). The sample size represents more than 80\% of the market share (in terms of premium) reflecting the fact that the selected sample is the representative of Pakistan Insurance and \emph{Takāful} sector. To estimate the cost efficiency, we use un-balanced panel data for the period 2006 to 2010, obtained from the annual reports of insurance and \emph{Takāful} companies.

4.2. Variable Description

The most critical task of the efficiency analysis for financial sector is to define output, inputs and their prices.\(^5\) An appropriate selection of the output-input variables in the insurance industry makes it a more difficult and challenging job.

The precision of the efficiency results depends upon the definition of outputs, inputs quantities and their respective prices. There has been much debate on the selection criteria of input-output variables in financial sector, particularly, for insurance industry (see for example, Yuengert, 1993; Cummins and Weiss, 1998; Worthington and Hurley, 2002).

\(^4\) Data Envelopment Analysis Program (DEAP), software used to calculate efficiency score.
\(^5\) See, Sealey and Lindley (1977), for a detailed discussion on variable selection.
Table-1
Descriptive Statistics

<table>
<thead>
<tr>
<th>Description</th>
<th>Mean</th>
<th>Median</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>invested assets</td>
<td>13.28×10^9</td>
<td>10.10×10^8</td>
<td>37.9×10^9</td>
</tr>
<tr>
<td>Net Premium</td>
<td>3.12×10^9</td>
<td>5.42×10^8</td>
<td>6.22×10^9</td>
</tr>
<tr>
<td>Input Variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td>635</td>
<td>223</td>
<td>975</td>
</tr>
<tr>
<td>Total Fixed Assets</td>
<td>1.97×10^8</td>
<td>1.03×10^8</td>
<td>2.27×10^8</td>
</tr>
<tr>
<td>Business Services</td>
<td>9.82×10^8</td>
<td>8.81×10^7</td>
<td>2.40×10^9</td>
</tr>
<tr>
<td>Equity capital</td>
<td>3.16×10^9</td>
<td>9.70×10^8</td>
<td>4.50×10^9</td>
</tr>
<tr>
<td>Input Prices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td>473498</td>
<td>455424</td>
<td>259383</td>
</tr>
<tr>
<td>Total Fixed Assets</td>
<td>0.1664</td>
<td>0.1435</td>
<td>0.1154</td>
</tr>
<tr>
<td>Business Services</td>
<td>0.0808</td>
<td>0.0419</td>
<td>0.1201</td>
</tr>
<tr>
<td>Equity capital</td>
<td>0.4826</td>
<td>0.4760</td>
<td>0.2620</td>
</tr>
</tbody>
</table>

Different output variables have been identified by various studies to measure the efficiency and productivity of insurance sector. Risk pooling (or risk bearing) and intermediation services are considered two main services that insurance industry provides to customers [Cummins and Zi (1998)]. Much of the existing literature prefer to use premium income as a common measure of risk pooling as policy holders in fact buy protection against risk by purchasing insurance policies.

For intermediation function we used the proxy of invested assets [See Cummins et al. (1999), Worthington and Hurley (2002), Jeng and Lai (2005)]. Worthington and Hurley (2002) consider invested assets as an output with the argument that net profit of most general insurers comes from the intermediation function of borrowing from policyholders and investing in marketable securities rather than premium.

The choice of input variables is somehow undisputed as compared to the selection of output variables in insurance analysis. In general, three types of input variables namely Labor, Capital and business services are used to measure the efficiency [see Meador et al (1996), Cummins et al (1996), Greene and Segal (2004), Cummins and Xie (2008)]. Some studies also used the equity capital as an input [Cummins, Turchetti, and Weiss (1996), Greene and Segal (2004), and Jeng and Lai (2005)]. It is important in the sense that insurers need to maintain equity capital for the payment of claims to their policyholders if losses exceed the expected limits. We include four
inputs Labor (X_1), total fixed assets (X_2), business Services (X_3) and equity capital (X_4), in the present study.

5. Results and Discussion

In this section we discuss the results of cost efficiency and its decomposition into technical and allocative efficiency arrived at by DEA analysis. We also measure total factor productivity by decomposing it into technical efficiency change and technical change

5.1. Efficiency Results

First, we measure the cost efficiency of individual insurance and Takāful firms and its components of pure technical, scale and allocative efficiency for each year from 2006 to 2010. Year wise average efficiency results of Takāful and conventional insurers for the period 2006-2010 are presented in Table 2.

<table>
<thead>
<tr>
<th>Year</th>
<th>Pure Technical Efficiency</th>
<th>Scale Efficiency</th>
<th>Allocative Efficiency</th>
<th>Cost Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>0.92</td>
<td>0.84</td>
<td>0.58</td>
<td>0.54</td>
</tr>
<tr>
<td>2007</td>
<td>0.96</td>
<td>0.77</td>
<td>0.53</td>
<td>0.51</td>
</tr>
<tr>
<td>2008</td>
<td>0.93</td>
<td>0.76</td>
<td>0.54</td>
<td>0.50</td>
</tr>
<tr>
<td>2009</td>
<td>0.72</td>
<td>0.50</td>
<td>0.41</td>
<td>0.29</td>
</tr>
<tr>
<td>2010</td>
<td>0.91</td>
<td>0.82</td>
<td>0.48</td>
<td>0.43</td>
</tr>
<tr>
<td>Mean</td>
<td>0.89</td>
<td>0.74</td>
<td>0.51</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Results depict that both the insurance and Takāful industry in Pakistan on the average remain technically efficient. However, insurance sector shows lower allocative efficiency on the average and consequently the cost efficiency dominates.

We find mix trend for pure technical efficiency over the period. Results indicate that on the average, insurance and Takāful sector shows 89 percent pure technical efficiency. This measure shows as to how much resource allocation and internal management are efficient in their performance. To achieve the most efficient level, firms, on the average need a reduction of 11 percent in the inputs level which they are currently using to produce the same level of output.
Similarly, scale efficiency of insurance industry remains about 74 percent indicating a significant expansion in insurance sector of Pakistan during 2006-2010. This measure indicates whether the firm is operating on optimal scale or otherwise. Scale efficiency equal to one (i.e. constant returns to scale) is the indication that firm is operating at optimal scale, while deviation from unity (either increasing returns to scale or decreasing returns to scale) depicts that firm is away from its optimal level.

Another important source of cost efficiency is firm’s allocative efficiency. If a firm is successful to equate its marginal products to input price ratios then it is optimizing its resources to produce a certain level of output. It is notable that insurance sector of Pakistan remains about 49 percent allocatively inefficient during the period of study, which might have contributed to cost inefficiency of this sector significantly. Average cost efficiency of this sector is recorded only 45 percent over the period concerned showing that insurance and Takāful firms could have reduced about 55 percent expenditures as compared to the existing level to produce same output level.

Figure-1

Firm Wise cost efficiency and its components (2006-2010)

Firm wise efficiency score depicts that only one firm that is also the largest firm in sample is 100 percent cost efficient. It is noteworthy that allocative efficiency dominates the cost efficiency as firm even with highest technical efficiency shows lower cost efficiency, as they remain less efficient allocatively. These results are not
unexpected because insurance sector of Pakistan has been highly concentrated as few firms are dominating the whole sector. This high concentration plus product differentiation of insurance industry might have resulted into care free attitude on the insurance firms who do not use their resources efficiently. However, recent wave of competition and deregulatory process may improve the resource allocation mechanism in these firms by providing them a level playing field to insurance sector in coming years.

Comparative analysis of Takāful and conventional insurers shows that overall Takāful firms are more cost efficient as compared to their conventional counterparts. It is noteworthy that allocative efficiency dominates the cost efficiency as Takāful firms are cost efficient due to high allocative (68%) efficiency, while conventional firms observed low allocative efficiency (43%) even though they are technically more efficient.

Table-3

Efficiency Comparison of Takāful and Conventional Firms

<table>
<thead>
<tr>
<th>Firms*</th>
<th>PTE</th>
<th>SE*</th>
<th>AE</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Firms</td>
<td>0.89</td>
<td>0.86</td>
<td>0.43</td>
<td>0.40</td>
</tr>
<tr>
<td>Takāful Firms</td>
<td>0.87</td>
<td>0.38</td>
<td>0.68</td>
<td>0.60</td>
</tr>
</tbody>
</table>

* PTE = Pure Technical Efficiency, SE = Scale Efficiency, AE = Allocative Efficiency & CE = Cost Efficiency

High allocative efficiency of Takāful firms indicates that this industry is choosing the optimal combination of inputs. However lower scale efficiency of Takāful firms indicates that the operators should expand their size to enjoy the benefits of economies of scale.

6 All Takaful firms are operating at Increasing Returns to Scale (IRS), while among conventional firms 51% are operating at Constant Returns to Scale, 44% at Increasing Returns to Scale and only 5% at Decreasing Returns to Scale.
5.2. Productivity Results

In this section, the results for total factor productivity and its components are also presented. We estimate output oriented Malmquist index in this study, which is based on DEA. Table 4 presents year wise average results for Malmquist index and its components of technical efficiency change, technological change and total factor productivity change.

Table 4
Malmquist Index Results

<table>
<thead>
<tr>
<th>YEAR</th>
<th>EFFCH*</th>
<th>TECHCH</th>
<th>PECH</th>
<th>SECH</th>
<th>TFPCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>0.997</td>
<td>1.021</td>
<td>0.955</td>
<td>1.044</td>
<td>1.017</td>
</tr>
<tr>
<td>2009</td>
<td>1.022</td>
<td>0.94</td>
<td>0.985</td>
<td>1.038</td>
<td>0.961</td>
</tr>
<tr>
<td>2010</td>
<td>1.083</td>
<td>1.001</td>
<td>0.974</td>
<td>1.112</td>
<td>1.083</td>
</tr>
<tr>
<td>Mean</td>
<td>1.033</td>
<td>0.987</td>
<td>0.971</td>
<td>1.064</td>
<td>1.019</td>
</tr>
</tbody>
</table>

*EFFCH = Efficiency Change, TECHCH = Technological Change, PECH = Pure Efficiency Change, SECH = Scale Efficiency Change and TFPCH = Total Factor Productivity Change.

If the value of Malmquist index and any of its components exceeds unity, it indicates the improvement in performance, while a value equal to unity shows no change and less than unity shows the deterioration in its performance. The results show that on the average insurance sector experienced growth in total factor productivity, mainly due to scale efficiency change, while deterioration is observed in technical change.

The average growth in total factor productivity is found to be 1.9 percent annually. Similarly, there has been significant technical efficiency improvement as this measure registers a 3.3 percent growth on the average, which is also consistent with our previous results of cost efficiency obtained on the basis of DEA. However, we find deterioration in technological change.

As can be seen from Table 4, there has been a decline in productivity in the year 2009, which may be the consequence of decline in overall economic growth, high inflation rate, floods, global financial crisis and internal security situation of the country. These factors might have caused a reduction in productivity. Malmquist productivity results also show that insurance industry has experienced an overall productivity growth, which is contributed mainly by scale efficiency change.
Further, the size of the business has a significant impact on different efficiency measures, although not identical for all firms.

Table-5
*Productivity Comparison of *Takāfūl* and Conventional Firms*

<table>
<thead>
<tr>
<th>Firms</th>
<th>EFFCH</th>
<th>TECHCH</th>
<th>PECH</th>
<th>SECH</th>
<th>TFPCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Firms</td>
<td>1.008</td>
<td>1.012</td>
<td>1.009</td>
<td>0.999</td>
<td>1.019</td>
</tr>
<tr>
<td>Takāfūl Firms</td>
<td>1.189</td>
<td>0.943</td>
<td>0.902</td>
<td>1.286</td>
<td>1.120</td>
</tr>
</tbody>
</table>

The comparative results as shown in Table 5 reflect that *Takāfūl* firms observed a significant improvement in productivity with score 12%, that arises mainly from scale efficiency change. On the other hand conventional insurers observed only 1.9% growth in total factor productivity. Conventional firms mainly depicts growth due to improvement in technology, while *Takāfūl* firms show deterioration in technology, which suggests that more innovative and diversified products should be introduced by *Takāfūl* firms to improve their productivity.

6. Conclusion

Although, a growing literature is concerned with insurance sector efficiency and productivity keeping into view its importance in economic development around the globe, only limited information is available on the efficiency comparison of conventional and Islamic insurance. This study attempts to break new grounds for measuring performance of insurance and *Takāfūl* firms in Pakistan. We compared efficiency of *Takāfūl* and conventional Insurance from 2006-2010, using DEA model.

Results of the analysis indicate that the insurance firms remain technically efficient showing about 89 percent efficiency during the period under reference. Similarly, results are also indicative of scale efficiency (i.e., 74 percent) illustrating a significant expansion in insurance sector of Pakistan during 2006-2010. On the other hand, however, insurance sector experiences allocative inefficiency, which dominates the cost efficiency.

The empirical results of cost efficiency indicate that *Takāfūl* firms are more efficient than conventional counterparts due to high allocative efficiency, leads to
the conclusion that their choice of inputs is optimal. Further we compared Takāful and conventional insurers in terms of economies of scales. The results suggest that all of the Takāful firms are operating at IRS as compared to 44% in case of conventional firms using this model. This means that large number of Takāful firms enjoying a chance to increase their operations to reduce scale inefficiency and improve their performance. Most of the conventional firms (51%) are operating at CRS with the exception of only 5% with DRS, which show that they are operating at optimal scale.

Malmquist index also shows high productivity results for Takāful firms, mainly due to scale efficiency change. However we do not find any contribution from technology change for both types of firms. It is recommended that Takāful and conventional firms should introduce new and innovative products to improve the productivity. Finally, the comparative analysis highlights that Takāful firms are efficiently competing with their conventional counter parts despite the fact that they are new in the field. It is recommended that Takāful firms should increase their efficiency and win the competition by improving their services, product quality and marketability of their products. To conclude, the study observes a significant improvement in the performance of insurance sector of Pakistan that is mainly contributed by technical and scale efficiency. However, firms could not succeed to allocate their resources optimally, perhaps due to market imperfections in the insurance industry.

It can be claimed that our study lays the foundations for further research to be carried out on the Takāful industry in different parts of the Islamic World with different perspectives, like macroeconomic environment, consumer preferences and corporate governance.
References

c conventional banking: through data envelopment analysis (DEA) model. *African
Journal of Business Management* 6, 787-798.

Risk and Insurance* 58, 452-479.

Yusop, Z., Radam, A., and Ismail, N., 2011. Risk management efficiency of
conventional life insurers and *Takaful* operators. *Insurance Markets and
Companies: Analyses and Actuarial Computations* 2, 58-68.

of mixed normal-gamma error model. *Journal of Banking and Finance* 17, 483-496.
Appendix-A

Premium, Assets and Investment Income of Takāful Industry

<table>
<thead>
<tr>
<th>Year</th>
<th>Net Premium</th>
<th>Gross Premium</th>
<th>Total Assets</th>
<th>Investment Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>32587061</td>
<td>128968834</td>
<td>314028583</td>
<td>18699897</td>
</tr>
<tr>
<td>2007</td>
<td>122158639</td>
<td>265261596</td>
<td>2049709638</td>
<td>72611699</td>
</tr>
<tr>
<td>2008</td>
<td>430305193</td>
<td>799922277</td>
<td>2561899601</td>
<td>68721395</td>
</tr>
<tr>
<td>2009</td>
<td>1157135909</td>
<td>1463608137</td>
<td>3015843070</td>
<td>189346770</td>
</tr>
<tr>
<td>2010</td>
<td>1580238472</td>
<td>2243204264</td>
<td>3341469369</td>
<td>181640658</td>
</tr>
</tbody>
</table>

Efficiency score of Takāful firms

<table>
<thead>
<tr>
<th>Takāful Firms</th>
<th>PTE</th>
<th>SE</th>
<th>AE</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takāful Pak.</td>
<td>0.95</td>
<td>0.25</td>
<td>0.75</td>
<td>0.71</td>
</tr>
<tr>
<td>Pak-Qatar(Gen)</td>
<td>0.99</td>
<td>0.22</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>Pak-Qatar(FMY)</td>
<td>0.57</td>
<td>0.53</td>
<td>0.63</td>
<td>0.36</td>
</tr>
<tr>
<td>Pak-Kuwait</td>
<td>1.00</td>
<td>0.31</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>Dawood Takful</td>
<td>0.84</td>
<td>0.59</td>
<td>0.59</td>
<td>0.50</td>
</tr>
<tr>
<td>Mean</td>
<td>0.87</td>
<td>0.38</td>
<td>0.68</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Malmquist Results for Takāful Firms

<table>
<thead>
<tr>
<th>FIRM</th>
<th>EFFCH</th>
<th>TECHCH</th>
<th>PECH</th>
<th>SECH</th>
<th>TFPCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takāful Pak.</td>
<td>2.198</td>
<td>0.919</td>
<td>1.003</td>
<td>2.192</td>
<td>2.020</td>
</tr>
<tr>
<td>Pak-Qatar(Gen)</td>
<td>1.045</td>
<td>0.915</td>
<td>0.989</td>
<td>1.056</td>
<td>0.956</td>
</tr>
<tr>
<td>Pak-Qatar(FMY)</td>
<td>0.857</td>
<td>0.922</td>
<td>0.797</td>
<td>1.075</td>
<td>0.790</td>
</tr>
<tr>
<td>Pak-Kuwait</td>
<td>1.171</td>
<td>1.029</td>
<td>1.000</td>
<td>1.171</td>
<td>1.205</td>
</tr>
<tr>
<td>Dawood Takful</td>
<td>0.674</td>
<td>0.931</td>
<td>0.719</td>
<td>0.937</td>
<td>0.628</td>
</tr>
<tr>
<td>Mean</td>
<td>1.189</td>
<td>0.943</td>
<td>0.902</td>
<td>1.286</td>
<td>1.120</td>
</tr>
</tbody>
</table>
Appendix-B

List of Insurance and Takāful Companies used in this Study

List of Insurance Companies

1. State Life Insurance Corporation Ltd.
2. Adamjee Insurance Company Ltd.
3. Askari General Insurance Company Ltd.
5. Premier Insurance Company Ltd.
6. Shaheen Insurance Company Ltd.
7. E.F.U. General Insurance Company Ltd.
8. E.F.U. Life Insurance Company Ltd.
10. New Jubilee Insurance Company Ltd.
11. International General Insurance Co. of Pak.
12. Habib Insurance Company Ltd.

List of Takāful Companies

1. Takāful Pakistan Ltd.
2. Pak-Qatar General Takāful Ltd.
3. Pak-Qatar Family Takāful Ltd.
4. Pak-Kuwait Takāful Ltd.
5. Dawood Family Takāful Ltd.